# Photon Detection in Liquid Argon TPCs

Stuart Mufson Large Area Cost Effective Detector Technologies Workshop Fermilab June 18, 2012

#### Photon Detection Overview

2 processes production scintillation light in LAr

$$Ar^* + Ar \rightarrow Ar_2^* \rightarrow 2Ar + \gamma$$

$$Ar^+ + Ar \rightarrow Ar_2^+ + e \rightarrow Ar_2^* \rightarrow 2Ar + \gamma$$

prompt light at 6 ns (23%) and late light at 1.6 µs (77%)

photons emitted in VUV at 128 nm where detection is difficult

• solution: TPB waveshifter to absorb UV photons and re-emit in the optical



TPB emission spectrum

#### Photon Detection

#### Stuart Mufson



#### The Plan

The primary goals of this project are to investigate the additional science scope that a photon detection system would enable for (underground) liquid argon detectors, to establish the science-driven performance requirements, and to build and test a prototype that meets these requirements.

#### Three components to the Program:

- 1. Development of a prototype system for tests in the 35-ton cryostat
- 2. Simulations of photon detection in LAr TPCs
- 3. Develop photon detector designs for the next generation of LArTPC detectors

# Science Drivers: Underground

There are significant "non-accelerator" science objectives that large, deep LArTPC detectors can explore.

#### 1. Proton Decay

- critical issue is to achieve extremely high rejection of backgrounds, less than one event per 100 kt-yrs, that could masquerade as the very rare signal.
  - "golden" proton-decay channel in LAr ( $p -> K^+v$ ) mimiced when a  $K^+$  outside the exterior cathode planes enters the fiducial volume
  - photon detection unambiguously determines the position of the event in the detector

#### 2. Supernova Neutrino Bursts

• detailed timing information from a photon system greatly enhances the understanding of the evolution of catastrophic stellar core collapse processes

# Science Drivers: Underground

#### 3. Atmospheric Neutrinos

- unique among sources used to study oscillations since the oscillated flux contains neutrinos and anti-neutrinos of all flavors, thereby enabling sensitive searches for new physics signatures
- the photon detection system improves the energy resolution, reducing systematic errors in the analyses, enabling more accurate searches

#### 4. Mitigation of Spallation Backgrounds

- muons and muon-induced fast neutrons entering the detector from the surrounding rock
- backgrounds are important for neutrino detection in the range of a few to a few tens of MeV

#### Science Drivers: Surface Detector at Homestake

Photon detection is a valuable tool in a large surface LAr detector for mitigating backgrounds from CRs

- beam spills  $\sim$  few  $\mu$ sec, drift times  $\sim$  few msec
- the CR background rate ~ 10 kHz
- in a few msec, a handful of CR muons will fall within the drift time window
- with accurate t<sub>0</sub> from the photon detection system, events outside the beam spill window can be accurately identified; with dE/dx corrected with t<sub>0</sub>, particle ID will further improve background rejection
- in conjunction with tracking that point events back to Fermilab, photon detection improves beam neutrino detection

# Research Program: Light Guides

Prototyping Conceptual Design
Conceptual light guide design as described in CDR light guide concept:



# Research Program: Light Guide Mounting





# Research Program: Coating Paddles

Light guides coated with waveshifter to convert 128 nm VUV photons from LAr scintillation to visible 420 nm light for detection –

develop coating methods:





test setup at IU

# Research Program: Value Engineering

# Look for plastic with long attenuation length –

# 10000 8000 6000 Golovko, Queens Univ. Hodmer, UNM 2000 Golovko, Queens Univ. Hodmer, UNM Wavelength (nm)

# Investigate alternative waveshifters –



# Research Program: DAQ Readout

Flexible electronics design as described in CDR – warm and based on commercial off-the-shelf (COTS) hardware



# Research Program: 35t Prototype Tests

Test prototype photon detector system in LBNE 35-ton prototype membrane cryostat



project has agreed to fund a LAr fill for these tests

# LAr Test Facility at IU

#### LAr test facility at Indiana:





# LAr Test Facility: Results

Fast scintillation light signals have been observed whose topologies match those in Bugel *et al. Nucl.Inst.Meth. A* **640**, 69 (2011) – MIT group





IU

**MIT** 

#### Research Program

#### 2. Simulations

- Simulation, reconstruction and analysis code for LArTPCs exist as LArSoft
  - improve & expand code to answer basic physics questions
- Overall goal is to evaluate LArTPC physics sensitivity as a function of photon collection ability in general, and for the specific configurations in particular
  - Building on basic photon simulation code that already exists in LArSoft, we will develop code enabling simulation of different photon collection design configurations in a flexible way
  - develop reconstruction code optimized for low energy (up to a few tens of MeV) events
  - study how well cosmogenic low-energy (e.g. spallation) events be rejected using vertex information enabled by photon collection

# backup

#### Paddle Geometric Acceptance – Bruce Baller Side View of Drift Cell



• (Geometric Acceptance) x (Wire Plane Transmission) for 4 adjacent paddles (P1 - P4) for light emitted a distance h (0 - 370 cm) directly above paddle P1.



- At a distance of 2.3 m the product < 1% for P1 and P2 (60 cm away).
- Paddles P3 (120 cm away) and P4 (180 cm away) down by an order of magnitude.
- <u>Conclusion</u>: light produced +/-2.5 m away from any paddle transverse to the drift direction will not hit the paddle.